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In this paper, periodic and anti-periodic boundary conditions are introduced in the Natural Element Method (NEM). These 

boundaries conditions are important because they allow to explore the inherent symmetry of the electromagnetic devices. It is shown 

that with these techniques NEM can now easily take advantage of electrical machines symmetry. The proposed approach is evaluated 

and compared with the traditional Finite Element Method (FEM). 

 
Index Terms — Periodic Boundary Conditions, Natural Element Method, Electrical Machines. 

 

I. INTRODUCTION 

HE meshless methods are increasingly being used in 

electromagnetic field computations [1]. In these methods a 

cloud of nodes without connectivity relations that covers the 

domain is used to solve the problem [2]. Due to its 

characteristics, these methods are well suited to solve 

problems involving moving parts like electrical machines [1]-

[2]. However, in this kind of problem it is important to 

consider the symmetry in order to reduce the number of 

unknown. Periodic and anti-periodic boundary conditions are 

useful techniques to explore the inherent symmetry of 

electrical machines [1]. 

 It is well known that meshless methods provides high 

accuracy solutions but present some difficulties to handle 

boundary and interface conditions [3]. To eliminate these 

drawbacks, the natural element method (NEM) was proposed 

[2]. The NEM approach is based on the Voronoï diagram and 

the natural neighbors concept. The main interest of NEM lies 

in its interpolation property which allows enforcing essential 

boundary conditions in an easy way as with the FEM [2]. 

Also, this method retains the natural capacity of treating 

heterogeneous domain and present similar numerical behavior 

with a better convergence compared to FEM in some cases 

[3].  

 As the NEM shape functions verify the Kronecker delta 

property, the imposition of periodic and anti-periodic 

boundary conditions can be done with the same techniques 

used by FEM [4]. Therefore, the aim of this paper is to 

introduce the periodic and anti-periodic boundary conditions 

in the natural element method. The proposed approach is 

applied to periodic electromagnetic device and the result is 

compared with traditional FEM. 

II. PROBLEM FORMULATION 

For the purpose of analysis, consider the periodic structure 

shown by Fig. 1. It is characterized by a geometric replication 

of the picked out   domain. If there are coils and/or 

permanent magnets oriented in the same direction, the 

potentials on line c are identical to those on line d [4]. 
 

 
Fig. 1: Periodic Structure: Only the repetitive   domain delimited by lines a, 
b, c and d. Dot in the circles indicate current entrance [4]. 

 

An anti-periodic structure is similar to the aforementioned 

case except that the source (current or permanent magnet) has 

alternately opposing directions [4]. If a 2D magnetostatic 

phenomenon occurs in   due to current circulation so, its 

Galerkin weak formulation can be written as [4]: 

 

     
 

 
      

 

                                      

 

 In (1)   is the problem domain surrounded by the surface Γ 

(given by the lines a, b, c and d), A is an approximation for the 

scalar component of the magnetic potential vector, μ is the 

permeability,   is the current density whose distribution is 

assumed to be known in   and w is the scalar weight function. 

Many numerical techniques can be used in the evaluation of 

(1). However, this paper is focused on NEM. 

III. THE NATURAL ELEMENT METHOD (NEM) 

The natural element method uses the concept of natural 

neighbors which is based on the construction of Voronoï 

diagram on a cloud of nodes. This diagram subdivides the 

studied domain into a set of polygons which defines the 

natural neighbors of the node in its center. The Delaunay 

triangulation, which is the dual of the Voronoï diagram, is 

constructed by connecting the nodes whose Voronoï cells have 

common boundaries (Fig. 2 (a))[5]. 

Based on the Voronoï diagram, the NEM shape function can 

be calculated. In the literature, several formulas are used to 

calculate this shape function [2]. Among the most used, are the 

T 



Sibson functions which may be determined in analogy with 

classical FEM shape functions as the ratio of surfaces in the 

case of triangles [5]. Thus, at a point x shown by Fig. 2 (b), the 

Sibson shape function is given by (2) where S(x) is the area of 

Voronoï cell and Si(x) represents the subarea of Voronoï cell 

linked to the natural neighbor ni (blue surface) [5]. 
 

 

 
 

      (a)            (b) 

Fig. 2. (a) Representation of Voronoï diagram (pink and black colors) and 
associated Delaunay triangulation (gray color). One node, its Voronoï cell and 

its five natural neighbors are highlighted. (b) NEM shape function computa-
tion. 

       
 
 xS

xS
x i

i                (2) 

 As (2) verifies the same properties of FEM shape functions 

as Kronecker delta, interpolation and partition of unity are 

verified [2, 5]. Thus, the potential can be written as follows: 
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where N is the number of natural neighbors visible from point 

x. Due to the inherent meshless character, (3) can be computed 

in arbitrary clouds of nodes and these nodes can move freely 

on the background without any geometrical restriction [2]. To 

treat the materials discontinuity a constrained Delaunay 

triangulation associated with a visibility criterion is used. This 

procedure constitutes an extension of NEM to the constrained 

Natural Element Method (C-NEM) [3]. 

IV. RESULTS 

 Consider the structure showed at Fig. 3 to validate the 

proposed approach. The circles are aluminium conductors 

carrying a current density in the same direction (exiting the 

sheet plane) of 1MA/m
2
 and involved by an iron material with 

μr = 7000. 

 
Fig.3. Periodic structure [2]. 
 

The periodic boundary conditions are set at the left and 

right boundaries while zero Dirichlet ones are set at the top 

and bottom boundaries. Fig. 4 shows the resulting induction 

flux distribution for a 1120 nodes discretization. 
 

 
Fig.4. The resulting induction flux distribution [2]. 

 

 The result is also validated by comparison with the FEM 

ones obtained with the same number of nodes. Fig. 5 shows 

the potential distribution on the boundary of the periodic struc-

ture. The analysis of these solutions has demonstrated the 

applicability and accuracy of NEM to treat periodicity. In the 

full paper, more details of the NEM and the periodicity treat-

ment will be discussed. Applications of this technique to solve 

anti-periodicity and electric machine will be performed. 

 
Fig. 5. Potential distribution along the periodic boundary. 
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